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I. STATEMENT OF THE PROBLEM

1.1 Problem Definition and Method of Attack

The objective of this research work is to numerically simulate the vacuum plume

flow field in the backflow region of a low thrust nozzle exit. In space applications, the

low thrust nozzles are used as a propulsion device to control the vehicle attitude, or to

maneuver the vehicle flight trajectory. When the spacecraft is deployed in the orbit or

cruising in a planetary mission, the vacuum plume is created behind the nozzle exit (so

called backflow region), by the exhausting gas of the propulsion system or by venting

internal gas to the extremely low density ambient. The low density vacuum plume flow

regions cover the continuum, transitional and free molecular flow regimes (see Figure

1), which were characterized by the Knudsen number Kn,

Kn=_
L

where £,_ is the mean free path of the gas molecules and L is the characteristic length

of the flow field. Figure 1 shows the backflow regions determined by the Kn number.

The transitional regime is defined by 0.01 _< Kn _< 10. The conventional Navier-Stokes

equations are valid only in the flow region close to the nozzle exit since the validity of

the Navier-Stokes equations fails asymptotically as the Knudsen number increases. The

vacuum plume characteristics prediction is primarily a problem of transitional aerody-

namics.

In order to handle the rarefaction effects properly, the following hypothesis is made

in this study,

I "the Burnett equations are the governing equations in the tran-sitional rarefied aerodynamic regime, where the Knudsen num-

ber is approximately between 0.01 and 10."
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This hypothesisis a compromisebetweenthe Boltzmann equationand the Navier-Stokes

equations. Basedon this hypothesis,themethod to attack the vacuumplume problem in

the backflowregion is to developa numerical techniqueto analyzethe characteristicsof

the vacuum plume by solving the Burnett equations. For clarity, it is further assumed

that the Navier-Stokesequations are no longer valid for this researchproblem, even

though the Navier-Stokesequations are still approximately correct up to I(_, = 10

(Cheng, 1989). One of research objectives is to verify the consistency of the Burnett

solutions with Navier-Stokes solutions and the Direct Simulation Monte Carlo solutions

as well as the source flow correlation method in the transitional regime.

OISCRETE_/////////////////////////////_
BOLTZMANN EQUATION _ "*_,", ";_"_Z ""_

PARTICLE _/ _ _ ,tr... cu. _/
MODEL ////////I//////////I///////I//2_9"_'_'2_,
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_\\\\\\\\\
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<<0.01 Kn-O.01 Kn-lO K"n>>-'_

Figure 1. Schematic flow regimes in the bazkflow region and Validity of the Algorithms.
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1.2 Survey of Low Density Nozzle/Space Plumes

Over the past years, many research efforts have been put into the space plume studies

because the gasdynamics of this rarefied plume affects the vehicle trajectory control

and propulsion efficiency. The plume in backflow region creates a negative force to the

space vehicle, affects the vehicle torque control (Baerwald, 1978). Also the exhausted

plume may contaminate the surface of the spacecraft. For the long duration flight, such

as the Moon/Mars mission, an accurate definition of the vacuum plume is required for

the improvement of the spacecraft performance.

It is difficult to simulate the space plume conditions by the ground test facility since

it is very hard to pump the testing vacuum chamber pressure lower than 1 micron. It

has been known that the performance of the low-thrust nozzle, unlike high thrust nozzle,

is greatly affected by the back pressure in the testing vacuum chamber, even though the

nozzle is operating under "choked" conditions. Available wind tunnel data show that,

for a micropound thruster, if the back pressure falls into the region of 10 to 1000 microns,

the thruster performance decreases with decreasing back pressure, however, the further

decreasing of back pressure in the range of 0.1 to 10 microns will increase the thruster

performance, (Pugmire 1968, John 1966, Sutherland 1966). There has been no proven

theory in the exact cause of this "low pressure" anomaly. The numerical prediction is

the only way to provide the answer.

The low density plume possesses the following characteristics (Kogan 1986, Legge

1988, Bird 1976): (1). The flow region covers the continuum, transitional, and free

molecular flow regimes without solid boundaries; (2). The conventional Navier-Stokes

equations are only valid close to the nozzle exit; (3). The translational nonequilibrium

effects occur in the transitional regime; (4). There is no flow separation; (5). Transport

properties not only depend on the first order spatial gradients of macroscopic flow

variables, but also high order spatial gradients. These information indicate that the



vacuum (space)plume prediction is a problem of the transitional aerodynamics.

There have beenmany efforts towards solving backflow vacuum plume problems.

The sourceflow techniquedevelopedby Boynton (1967) and Simons(1972) is a useful,

inexpensiveengineeringdesigntool for the calculation of spacecraftimpingement effects

in the continuum regime, although some characteristics of the expansion are not properly

treated. In order to produce a realistic source flow plume, the maximum Prandtl-Meyer

expansion angle _m,_ is computed at the nozzle lip. Using this angle, the source flow

area is computed as assuming the source to be located on the axis at a point defined by

the interaction of the expansion angle with the axis. The model primarily assume that

in the backflow plume region, the density at some radial distance from the source may

be expressed as

Po -- r2 c°s7 2 _ma.

where A is a plume constant, and, velocity may be assumed constant. The exponent 7

is obtained from the conservational mass and momentum. At the large distance from

the nozzle exit, the flow may fall into transitional and free molecular regime, the gas is

no longer in thermal equilibrium and the continuum equations become invalid. In order

to understand detailed fluid dynamic phenomena in the backfiow region, this empirical

method can not produce successful results.

Method of Characteristics (MOC), plus the boundary layer prediction technique,

can predict accurate plume expansion if Mach number is less than 10. For vacuum

plume, the density is very low, the conventional MOC technique can still predict the

flows, but the physical meaning and accuracy out of the computational number is in

doubt.

Navier-Stokes equations have been widely accepted as a powerful and accurate

governing equations for most continuum fluid flows. Most of the Navier-Stokes plume
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predictions are performed at the low altitude wherethe density is fairly large compared

to vacuum plume. Vacuum plume prediction is a problem of highly nonequilibrium

transitional aerodynamicproblem. In the discussionlater, the Navier-Stokesequations

fails in the transitional regime.

It is necessaryto have new computational concepts(Direct Simulation of Monte

Carlo technique)or governingequations(suchasBurnett equationswith nonequilibrium

effects) in order to solvethe complextransitional aerodynamics(vacuum plume in the

backflow region), or a new numerical technique to solvethe difficult physical equations

(Boltzmann equation).
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II. TECHNICAL DISCUSSION

2.1 Introduction

From the physics point of view, the Boltzmann equation has long been established

as the standard mathematical formulation of a nonequilibrium thermally perfect gas as a

set of molecules. Whereas the continuum Navier-Stokes equations have the flow velocity

and macroscopic thermodynamic properties as dependent variables. The only dependent

variable in the Boltzmann equation is the distribution function for the molecular states.

The velocity distribution function f is a scalar function which depends in general on

time, the three components of molecular velocity, and the three components of molecular

position,

f(ui, xi, t)dui = probability of molecule in velocity range ui + dui,

at position xi, at time t

By taking moments (Lumpkin, 1990) of the velocity distribution function over all ve-

locity space, all macroscopic thermodynamic properties of the gas can be obtained.

However, the number of dependent variables is reduced at the expense of the additional

number of independent variables from those of physical space to those of mathematical

phase space. This leads to difficulties in the way of direct numerical or analytical solu-

tions of Boltzmann equation for nontrivial gas flow problems though analytical solutions

exist for a few simple cases. This applies even for monatomic gas flows and there is no

prospect of obtaining direct solutions of the Boltzmann equation for complex aerother-

modynamic problems involving real gas effects.

One alternative is to model the gas flow at the molecular level and a number of

Monte Carlo simulation methods have been developed to do this. The Direct Simu-

lation Monte Carlo (DSMC) method has gained a broad acceptance. Yet, while this

method is capable of good predictions of hypersonic flow in the continuum transitional
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regime, it is quite expensivein terms of computer time becausethe computational time

is proportional to the moleculesand cellsnumber in the simulated flow. DSMC assumes

that moleculesarepoint centersof the massand point centersof repulsion containing

no internal structure. DSMC is primarily employedin highly rarefiedgasflows, it is not

practical to useDSMC for high Reynoldsnumberflowsin which Navier-Stokesequations

canbesolvedinstead. As a numericaltechnique,DSMC may capableof predicting com-

plex problems involving effectssuchas dissociation, chemical reactions, and radiation

as long as the physicsof the variousphenomenacan bedescribedat the molecular level.

However some essential physical questions concerning the continuum and transitional

aerodynamic phenomena such as entropy are not answered satisfactorily.

To circumvent the vexed Boltzmann equation, an alternative can be achieved by

solving conservational equations. To relate the nonequilibrium kinetic theory (Boltz-

mann equation) to the continuum theory of gas dynamics, Hilbert-Chapman-Enskog

expansion method plays an important rule. Based on this method, the velocity distri-

bution function can be expressed in the series expansion of Knudsen number,

f =f(0) + f(1) + f(2) + f(3) + ...

=f(0) (1 + allx'n + a2 K2 + a3Ix'3n +...),

which is the perturbation expansion of the velocity distribution function about the

MaxweUian distribution which a gas exhibits at equilibrium, where f(0) is the Maxwellian

distribution function, ai, i = 1,2, 3, ... are functions of density, molecular velocity, and

temperature (Bird, 1976). Substituting this expansion into Boltzmann equation, taking

moments of the Boltzmann equation yields the continuum equations of fluid mechanics,

a set of conservation equations describing global conservation of density, momentum,

and energy. To close this system of equations requires constitutive equations which

express viscous stress and heat flux in terms of the distribution function rather than

macroscopic gradients. Closure of these equations can be achieved by using any of

-7-



the nth order approximations to the distribution function described in the expansion.

The constitutive conditions relating viscous stress tensor and heat flux to macroscopic

gradients can be obtained. By equating like terms for Knudsen number in Boltzmann

equation, it was proved that the Euler equations are the zeroth-order approximation,

the Navier-Stokes equations are the first-order approximation and the Burnett equations

are the second-order approximation.

2.2 Inadequacy of the Navier-Stokes Equations

The conservation equations of fluid mechanics are valid in all flow regimes. But

solving the general conservation equations (such as Navier-Stokes equations) require

constitutive relations to close the system of equations. When the local Knudsen number

which is based on the scale length of the gradients of the macroscopic flow properties

exceeds 0.1, the conventional constitutive equations that relate the shear stress and hea_

fluxes to these gradients breakdown. One of the major breakdown in the transitional

regime is that the thermal equilibrium fails.

Reasons for the failure of the Navier-Stokes equations may be associated with any

or all of the following assumptions embodied in these equations (Fisko, 1989):

(1). Linear stress-strain tensor dependent only on velocity gradients.

(2). Linear heat-flux vector dependent only on temperature gradients.

(3). Zero bulk viscosity.

(4). Small Knudsen number flow (Continuum gas model).

(5). No direct contribution of nonequilibrium internal molecular energy to viscous stress

or heat flux.

2.3 Difficulties of Solving Burnett Equations

It has been a mislead concept that the Burnett equations are no more accurate than
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the Navier-Stokesequations until Fisko and Chapman (1988) obtained the Burnett so-

lutions for thick shocks. The comparisonof solutions of Navier-Stokes,Burnett and

the DSMC clearly showsthat the Burnett solutions are superior to the Navier-Stokes

solution (Figure 2). However,solving the Burnett equationsis by no meansa straight-

forward procedure becausethere are not enough well-defined boundary conditions for

the fourth-order nonlinear partial differential equations. In addition, the questionsof

convergence,accuracy,stability, and viscousdissipation, etc., still remain.

Severalfundamental questionsare addressedin this report:

1. For testedmonatomicgasesand testedMachnumbers,the Burnett equationsgive a

significant improvementover the Navier-Stokesequations in all macroscopicshock

parametersas comparedwith DSMC and availableexperimental results (Lumpkin,

1990). But the flows in the transitional regimearealwaysnonequilibrium. What is

the theoretical ground to accept that the Burnett equations are the true governing

equations in the transitional regime? The samequestion was raised towards the

Boltzmann equation.

2. The mathematical characteristicsof the Burnett equationsare not clear, primarily

becausethey are third-order highly nonlinear partial differential equations.

3. Most of the numerical schemeswere developedfor the Euler and Navier-Stokes

equations. Shouldwe routinely apply the numerical schemeto discretize the Bur-

nett equations? What is the best stable numerical schemeto solve Burnett equa-

tions efficiently?

4. The boundary conditions for solving Burnett equationsare undetermined.

As for this report, weare still working on the numerical schemeformulations and

one-dimensionalshocksolutions in the wind tunnel conditions without answeringthese

basic questions.

As anumerical experimenton Burnett equations,Direct Lower-UpperFactorization
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(DLUF) schemeand the Arbitrary-Lagrangian-Eulerian (ALE) schemehavebeendevel-

oped and adopted to obtain the solutions for Burnett equations. The one-dimensional

normal shock wave structures have been obtained by solving Navier-Stokesand Bur-

nett equations,unsteady shock-tubesolutionsare alsoobtained from the ALE scheme.

Difference between Navier-Stokesand Burnett solutions are shown for the density-

temperature profiles for normal shock structure. The developedDLUF schemeshows

a good potentials for solving Burnett equations will success. The ALE schemehas

the advantagesof reducing the order of partial differential equations, and allows more

flexibility for viscousstresstensorand heat flux formulations.

_,,/t.o
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/
/
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l 3 S T 9 II
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Figure 2. Comparison of reciprocal shock wave thickness by Navier-Stokes,

Burnett, DSMC solutions and experiment.
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2.4 Translational thermodynamic Nonequilibrium Effects

One of the major characteristic of vacuum plume flows is that the flow is always nonequi-

librium, which primarily include the molecular translational, vibrational, and rotational

nonequilibrium. For monatomic gases, the rotational and vibrational nonequilibrium are

absent. Burnett equations do not account for molecular internal energy (i.e. rotation or

vibration), and thus it is applied for monatomic gases. Since most of the gas is diatomic,

attention must be given to the theory of the rotational and vibrational nonequilibrium

effects. Unfortunately, the theory for rotational nonequilibrium is not as mature as the

theory for translational nonequilibrium. This is due to the facts of complexity of the

problem and lack of study interest.

In view of the theories up to date, it would seem that there are two basic ways

to model rotational nonequilibrium effects using a continuum formulation. The first
t

method, the so called "bulk viscosity" method, uses modifications to the stress ten-

sor to account for the dissipation which results from rotational nonequilibrium. It

assumes rapid equilibration and small departures from equilibrium, and is therefore in-

appropriate for hypersonic flow conditions. The second method, so called "relaxation

equation" method, uses two temperatures to describe the rotational and translational

energy modes. Since an additional temperature is used to describe the macroscopic

state of the fluid, an additional governing equation is needed in addition to the conser-

vation equations for mass, momentum, and energy. The additional governing equation

can be derived from either the fully classical or the quasi-classical viewpoints. In both

cases, the assumption of long relaxation times is required. The quasi-classical derivation

also requires the assumption of small departure from equilibrium, an assumption which

is not strictly valid in hypersonic flow. Comparing these two methods, for low den-

sity hypersonic flows, the relaxation equation method is preferred over a bulk viscosity

method.
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The general theory of translational-rotational nonequilibrium has only been car-

ried out for first order departuresfrom equilibrium distributions and in the limit of long

relaxation times. The resulting set of equations (use both classicaland quasi-classical

models) is simply the Navier-Stokesequations supplementedby an additional govern-

ing equation, suchas Jean's equation (Jean, 1904). The implementation of rotational

nonequilibrium into Burnett equations,evenfor a monatomic gas, with the simplified

modifications, is uncertain becauseof the accuracyof the additional governingequations

is unknown for low density hypersonicflows.

the rotational and vibrational thermodynamic nonequilibrium excited in the high

temperature, hypersonicflows arenot important.

In this study, the interest is in the simulation of the backflow region, where low

density effects is the major governingmechanism,the rotational and vibrational ther-

modynamic nonequilibrium excited in the high temperature hypersonic flows are not

important. Therefore, our intention is to solvethe monatomic gasproblem such that

translational nonequilibrium is the most important phenomenarequired to beaccurately

implemented. There are severalattempts to analyze the translational nonequilibrium

effects (Anderson, 1989). To handle the translational nonequilibrium, the translational

and kinetic temperature havebeenintroduced. Similarly, non-isotropic "pressure" (nor-

mal and tangential pressure)areused to evaluate the stress tensor. The key questions

are still remaining: what is the relationship between theseproperties? What are the

physical laws that guarantee the essential validity of these concepts? What are the

appropriate boundary conditions?

2.5 Slip-Wall Conditions in Nozzle/Orifice Exit

Due to the complexity of the physical problems, currently, the flows inside the

low-thrust nozzle and vacuum plume are decoupled, in the sense that, the nozzle exit
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conditions are used as the inflow boundary conditions for vacuum plume predictions.

The specificationof the nozzleexit conditions affectsthe accuracyof the vacuum plume

predictions.

Theoretically, boundary conditions and, for unsteadyflows, initial conditions must

be given so as, in principle, to ensure the existenceand uniquenessof the solution

of the problem. However, in practical applications, the existenceand uniquenessof

the solution can not be proved and one must restore to physical intuition, non rigor-

ousmathematical interpretation, and numerical experiments in order to determine the

proper boundary conditions. The conventionalwall boundary conditions, suchasno-slip

and no-temperature jump conditions, areonly valid when K, is less than 0.01. For low

density nozzle, the nozzle expansion ratios are usually big enough that most likely, the

flows at nozzle exit have very low densities such that Kn is greater than 0.01. In this

case, the so-called "slip-wall" conditions need to be used at the nozzle wall exit. Based

on kinetic theory, depending on the thermodynamic state and the laws of interactions

between the gas molecules and the wall, the slip-wall conditions can be determined

(Hollanders, 1988).

The flow variables along body (nozzle wall exit) surface (s) can be computed by

the first-order Maxwell/Smoluchowski (Kennard 1938, Schaaf 1961) slip boundary con-

ditions (in Cartesian coordinates),

Surface velocity us,

__
crn /9 s s

and surface temperature T,,

T,
2-a, 27 2# .

at 7 + 1 pP_ V \o J

where T_, is the wall surface temperature, un, at are the surface reflection and accom-

modation factors, respectively. For a complete accommodation, un = 1, ut = 1.
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In order to treat rotational nonequilibrium effects, the above slip-wall boundary

conditions canbe extendedas (Kennard 1938),

Surfacevelocity us,

U s --

surface temperature Ts,

O'n p s s

at 2p-dc.t

and rotational surface temperature Trs,

2 - at 2At
Trs =Tw+

O't p-COyr

where T,- is the rotational wall surface temperature, At, A_ are translational and rota-

tional heat conductivity, respectively, C,t, C,,_ are translational and rotational specific

heat per unit volume, and
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III. TECHNICAL ACHIEVEMENTS

3.1 Reviews of the Burnett Equations

Literature survey on Burnett equations shows that only limited papers have been

published on the derivation works. Chapman and Cowling (1970) derived the two-

dimensional Burnett equations in Cartesian coordinates. Stanford's group, Chapmann

and Zhong et al. (1988, 1991), has systematically published their results in solving the

Burnett equations.

In order to check the validity of the formulations, Burnett equations have been

derived for one- and two-dimensional Cartesian coordinates. The final forms of the

derivations (Liaw, Guo, 1992) is shown in Appendix.

3.2 Pressure-Based Methodology (ALE Scheme)

In order to select a best numerical scheme to solve Burnett equations, extensive

reviews on current existing TVD family of second-order central and upwind difference

schemes have been performed. It is impossible to adopt a numerical scheme to solve

Burnett equations without testing the capabilities of the specified scheme. Two different

kinds of schemes have been examined/developed carefully, pressure-based methodology

and density-based methodology.

The Arbitrary-Lagrangian-Eulerian (ALE) numerical technique is adopted in this

investigation. The ALE scheme is a pressure-based methodology, which is a time-

dependent finite volume differencing scheme for arbitrarily shaped geometry. In the

current formulation, the gas could be chosen to be monatomic, diatomic or polyatomic

arbitrarily. Due to the testing and validation purpose, the high order Burnett stress and

heat flux terms are switched on only in one direction. For the present time, due to the

limitation of time duration, the rotational and vibrational nonequilibrium for diatomic
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ot polyatomic gasesareneglected.

The integrated mass, momentum,

volume for gas/fluid may be written as

Continuity equation:

and energy equations over a moving control

d ///v pdV + //A P(ff-[7) "d_A=0
dt (t) (t)

Momentum equations:

_ (t) (t) " (t) (t)

Energy equation:

dt (t)

where

REdV+ ffA(t)pE(ff- U).d) = -/f_ Pff"d_A

2

j=-kvr- po _2_/.,v(_) + ja>
7r_=l

r = u(Vff + (Vff) r) + _V. ffI + ¢2)

where p is local fluid density, ff is local fluid velocity vector, U is the moving boundary

velocity, E is the specific internal energy not including chemical energy, P is static

pressure, 7- is the viscous stress tensor, 7.(2) is the Burnett stress tensor, f is the heat

flux vector, J_) is the Burnett heat flux vector, k is the thermal conductivity, A and #

are the dilatation and shear viscosity coefficients, respectively. The ideal gas equation

of state is also assumed for the freestream gas.
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At eachcycle (time step), the calculations is divided into two stages,a Lagrangian

stage and a rezone-Eulerianstage. In the Lagrangian stage, the velocities move with

the fluid particle velocity, implicit differencing is used for all the diffusion terms and

the terms associatedwith the pressurewavepropagation. There is no convectionacross

cell boundaries. The coupled implicit equations are solved by the method similar to

the SIMPLE (Patankar, 1980)algorithm, with individual equationsbeing solvedby the

conjugate gradient method (O'Rourke, 1986). In the rezoneEulerian stage, explicit

methods areusedto calculate convection.The convectioncalculation can besubcycled

an arbitrary number of times, and thus the main computational timestep is not re-

stricted by the Courant stability condition of explicit methods. A second-orderupwind

differencing techniqueis used for the spatial differencing. Detailed information about

the ALE schemecan be found in Amsdan (1989) and Deng (1991).

The implementation of Burnett viscousstressand heat flux terms require specia4

treatment of third-order partial differential terms and crossproduct terms of first-or

second-orderdifferentials. Due to the integration methodology, the order of partial

differential terms in the formulations can be reducedby one. It is only necessaryto

define the viscous stresstensor and heat flux vector itself, which include only second-

order partial differentialsand crossproduct of first-order partial differentials. The basic

methodologyusedhereis basedon the Gausstheorem, for any arbitrary scalarquantity

Q,

/f v OQ dV = /f m 4O_i " d _A = _ Q,_, " d_A.
o_1

By defining scalar property at the cell center, and vector property at cell vertex, it is

possible to determine first-order partial derivatives at the cell surface, and second-order

derivatives at the cell center.
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3.2.1 Unsteady Shock-Tube Solutions by the ALE Scheme

To test the validity of the current scheme, a typical one-dimensional shock-tube

solutions was obtained. The selected gas in this calculations was arbitrarily chosen to

be Nitrogen. Rotational and vibrational nonequilibrium effects were neglected at the

present time. The pressure ratio is 10 at the diaphragm initially. The shock tube length

is lm, the grid point along the tube is 201. The computed shock wave propagation

at a given time from Euler, Navier-Stokes, and Burnett equations were compared to

the exact Riemann solutions. The non-dimensional plots of pressure, density, velocity,

and temperature are shown in Figure 3, 4 and 5. The computed results were based on

real gas properties, which is currently defined in the way that all the thermodynamic

properties such as viscosity, thermal conductivity, heat capacity, specific heat ratio, etc.

are function of local temperature. Results shown at Figure 3 and 4 indicates that the

current numerical scheme (ALE) predicts the shock wave propagation very accuratel3_.

The Burnett solutions is very close to the Navier-Stokes solutions in the way that only

a small difference can be detected from data files. These results validate the current

formulations.
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3.2.2 Shock Wave Structures by the ALE Scheme

High Mach number normal shockwave structure prediction is in progress. Tile

comparisonof Euler, Navier-Stokes,and Burnett solutionswill becompletedin the near

future. The numerical experimentsare for the Argon (monatomic) gas with different

high inflow Mach numbers. Different scalecalculations will be investigated.
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IV. FUTURE WORK

As mentioned in section one, the objective of this investigation is to find the flowfield

in the vacuum plume backflow region in space. Three interrelated numerical techniques

are proposed for the upcoming investigation.

1. The Burnett equations bridge the gaps between continuum and Boltzmann equa-

tion. The steady state solution of normal shock structure for Argon has been

obtained by integrating the one-dimensional Burnett equations. The Direct Lower-

Upper Factorization scheme is used to discretize the governing equations. More

test conditions, primarily with lower densities and higher Mach numbers, will be

exercised in this code. Preliminary results show that the Burnett terms suppress

shock oscillations downstream, and it converges to the steady solution faster. The

code development for two-dimensional flows will be continued in the future. The

Direct Lower-Upper Factorization Scheme (DLUF) in two-dimensional rectilinear

coordinates for Navier-Stokes/Burnett equations with a general grid generator will

be developed. Under subcontract, Dr. J. D. Mo of the Memphis State Univer-

sity will be responsible for the basic code development. The principal investigator,

Dr. G. S. Liaw of Alabama A&M University will be responsible for the insertion

of the rarefaction effects and the nonequilibrium effects into the basic code. This

new computer code will calculate the low density space-plume flowfield where the

Knudsen number is less than 1. The ALE technique is also applied to solve Burnett

equations. The numerical formulations are in the forms of three-dimensional fluid

flows for real gases (monatomic, diatomic or polyatomic). Only one-dimensional

cases has been validated. Continuous code development and validations for two-

and three-dimensional cases will be performed in the future. The key questions

here are how to handle the nonequilibrium effects. For monatomic gases, the rota-
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tional and vibrational nonequilibrium are absent. Most of the real gases composed

of the vacuum plume are diatomic or polyatomic. The future work towards solving

Burnett equations including real gas effects will concentrate on the handling of the

translational, rotational nonequilibrium effects.

2. For far field where the Knudsen number is larger than 1, the transitional nonequi-

librium effects dominate the flow characteristics and continuum assumptions are in

doubt. There are two approaches to tackle this problem:

(a). The Direct Simulation Monte Carlo (DSMC) technique,

(b). The Direct Solution of the Boltzmann Equation.

The DSMC is a straight forward and intuitive method to acquire the flowfield in

large Knudsen number (Bird, 1990). The DSMC method is capable of simulating the

low-density flow phenomena involving nonequilibrium of the translational and internal

modes. Calculations can be made throughout the rarefied regimes and can overlap with
$

the continuum calculations, the degree of overlap being dependent on the magnitude of

the computating resources. It is very practical to adopt DSMC technique to attack the

vacuum plume problems.

Direct solutions of Boltzmann equation have been a difficult subject for the aerody-

namic problems (Cercignani, 1988). Based on literature survey, the only two-dimensional

flow simulations based on direct solutions of Boltzmann equation was published by

Tcheremissine (1989). However, direct solutions of Boltzmann equation in multidimen-

sional flows require great computer resources as well as new numerical techniques. We

plan to solve the nonlinear Boltzmann equation in the high Knudsen number backflow

region of the plume using ALE technique. The appropriate upstream boundary condi-

tions (close to the nozzle exit with relatively larger Knudsen number) will be provided

by the solution of Burnett equations obtained by DLUF method. The solution of Boltz-

mann equation will provide indepth knowledge in classical sense of Hydrodynamics.
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Derivation of the Burnett Equations in Cartesian Coordinates

The Burnett equations in primitive variables are cast in the Cartesian tensor forms:

Op

0--_ -{- p, i Vi + p Vi ,i = 0

OE
P-G + pvjvi,_ + oo, J = o

Oh Op
p-_ + pVih,i Ot p,iVi - pVi,i + oijVj,i + qi,i = 0

(1)

(2)

(3)

The constitutive relations for the viscous stress aij, and heat flux qi.i, are

_(0) _(1) _(2) a!k)oij = oij -t-oij -_-oij -t-'" @ ,j

_(1) _(2) .. q}k)q_=ql °)+q, +qi +" +

(4)

(5)

where i = 1, 2, 3 and j = 1,2, 3, and the superscript number k = 0, 1, 2, ..., n represent

the kth-order of accuracy.

k=O,

k=l,

k=2,

k=3,

the Euler equations,

the Navier-Stokes equations,

the Burnett equations,

the Super Burnett equations.

The viscous stress and heat flux, up to second-order terms, are described as follows:

(0)
ij :P_ij

0}) ) = - 2#(Dit - 1 Do_,Sij)
,3

Doo ,i)+ 2(L,j -
p o

- w2(Mij - _MoJ O) - 2,_2(N O - N_o_i¢)
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where

1

+ w3R(Aij - 3Ac, c,Sij

R 1

+ .,5-_(C_ - _C_j o

+ .J4-ff(Bo - 3

+ _o(E,s - ! So.,%) }
3

q(O)
i =0

q(1) = _ A OT

q(2) =__2{o_ 10T Ou_
i p T Oxi Ox_ + o_[-5-5-i-:z' T_x " ) + 20xo Ox,

1 OT
(D_i - 1D_5_i)},+ °5_0-22 d

Dij =

Lij --

Mij =

Nij =

Aij --

Bij =

Cij --

EiS =

20xs+-5-_x, )

1 o 10p 1 o_o_( 10p
_Oz,( -_SVxj)+_o:_j pox, )
1. Oui Ou_ Ou i Ou_

10u_ 1 Ou_ 1Dt,_5_i) ]
-2[_xi (D`_j - 5 D'x'_5'_j) + _jxj (D_i - 5

02T

OxiOx i

1 Op aT Op OT

_(a_, a£. + axj ax, )
OT OT

Oxi Ozj

1
(Di_ - 5D,x,_6i,_)(Dj,_ - 1Dm, Sj,_ ).3

(s)

(9)

lO)

11)

(12)

(13)

(14)

(15)

16)

17)

18)

19)

where wi and 0 i can be determined by Chapman-Enskog method, depending on the gas

molecular repulsive force models used. Expand the tensor terms from above equations

in terms of the primitive variables and its derivatives, an explicit expression for the

stress tensor components and heat flux vector components can be obtained.
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